
Template:TagCloud
/***

USAGE:

TagCloud()
build a tag cloud from a search query.

PARAMETERS:

query: str
query string for selecting pages on which the tag could is built on (default: all pages)

showCount: bool
show number of occurrences of the tag (default: true)

max: num
limit tag cloud to top X tags (default: 10)

order: str
order tags by name or frequency (either "count" or "name"; default: "name)

exclude: list
list of tags to exclude from tag cloud

fontSizeUnits: str
display units for font size (default: "%")

fontSizeMin: num
smallest display font (default: 80)

fontSizeMax: num
largest display font size (default: 240)

fontColorRMin: num
lowest color value for red (default: 50)

fontColorRMax: num
highest color value for red (default: 50)

fontColorGMin: num
lowest color value for green (default: 200)

www.princexml.com
Prince - Personal Edition
This document was created with Prince, a great way of getting web content onto paper.

fontColorGMax: num
highest color value for green (default: 100)

fontColorBMin: num
lowest color value for blue (default: 50)

fontColorBMax: num
highest color value for blue (default: 50)

***/

var searchString = $query ?? "";
var hitShow = $showcount ?? true;
var tagOrder = $order ?? "name";
var tagsLimit = $max ?? 10;
var tagsToExclude = $exclude ?? [];
var fontSizeUnits = $fontSizeUnits ?? "%";
var fontSizeMin = $fontSizeMin ?? 80;
var fontSizeMax = $fontSizeMax ?? 240;
var fontColorRMin = $fontColorRMin ?? 50;
var fontColorRMax = $fontColorRMax ?? 50;
var fontColorGMin = $fontColorGMin ?? 200;
var fontColorGMax = $fontColorGMax ?? 100;
var fontColorBMin = $fontColorBMin ?? 50;
var fontColorBMax = $fontColorBMax ?? 50;

// TODO: figure out what this is supposed to do
if(__request.args.q) {

<div id='tagResults'>
 "Pages tagged with "; <u> __request.args.q; </u> " in this section ";
wiki.search("tag:"..string.quote(__request.args.q).."", 1000, "title", searchString);
 "See all pages tagged with " .. __request.args.q .. " across entire site"; " »";

var defined = __request.args.q;
var found = wiki.getsearch("tag:" .. string.quote(defined), 1, _,"type:wiki");
if(#found) {

var def = found[0].tags[defined].definition;
if(def) {

;
 "Go to the " .. __request.args.q .. " definition page"; " »";

}
}

</div>
}

// convert list of excluded tags into a map (easier to check if tag is excluded)
let tagsToExclude = { (t): true foreach var t in tagsToExclude };

// compute map of tags based on search string and excluded tags (note: only pages have tags)
var myResults = wiki.getsearch(searchString, 1000, _, "type:wiki");
var tagMap = { };
foreach(var p in myResults, if __index < 250, var t in map.keys(p.tags ?? {}) where !tagsToExclude[t]) {

var tag = string.startswith(t, "define:") ? string.substr(t, 7) : t;
let tagMap ..= { (tag) : 1 + (tagMap[tag] ?? 0) };

}

// compute list of tags sorted by occurrence count
var tagListofMaps = [{ name: t, count: tagMap[t] } foreach var t in map.keys(tagMap) where tagMap[t] > 0];
var tagsTotal = #tagListofMaps;
let tagListofMaps = list.sort(tagListofMaps, 'count', true);
if ((tagsLimit > 0) && !__request.args.alltags) {

let tagListofMaps = list.splice(tagListofMaps, tagsLimit);
}
var maxValue = tagListofMaps[0].count;
var minValue = tagListofMaps[#tagListofMaps-1].count;

// sort display of tags by frequency or name
let tagListofMaps = (tagOrder == "name" ? list.sort(tagListofMaps, 'name', false) : list.sort(tagListofMaps, 'count', true));

// emit tag cloud
<div id="tagCloud">

foreach (var tm in tagListofMaps) {

var tag = string.tocamelcase(tm.name);
var tagURI = page.uri & { q: tag } .. '#tagResults';
var count = tm.count;
var weight = (num.log(count) - num.log(minValue)) / (num.log(maxValue) - num.log(minValue));
var fontSize = fontSizeMin + num.round((fontSizeMax - fontSizeMin) * weight);
var fontColorR = fontColorRMin + num.round((fontColorRMax - fontColorRMin) * weight);
var fontColorG = fontColorGMin + num.round((fontColorGMax - fontColorGMin) * weight);
var fontColorB = fontColorBMin + num.round((fontColorBMax - fontColorBMin) * weight);

<li style=("padding-left: 1ex; display: inline-block; font-size:" .. fontSize .. fontSizeUnits)>
var rgb = "rgb(" ..fontColorR .. "," .. fontColorG .. "," .. fontColorB .. ")";
 tag
if(hitShow) {

^{"(" .. count .. ")"}
}

 }

if (!__request.args.alltags && (tagsLimit > 0) && (tagsTotal > tagsLimit)) {
<li style="display:block">

"Showing top " .. tagsLimit .. " tags. ";
"See all ".. tagsTotal .. " tags";
" »";

}

</div>

	Template:TagCloud

